Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rapid global electrification is deepening cross-sector interdependence, fundamentally reshaping the resilience of energy systems in the face of intensifying climate extremes. While increased integration across energy generation, transmission, and consumption sectors can significantly enhance operational flexibility, it can also amplify the risk of cross-sector cascading failures under extreme weather events, giving rise to an emerging resilience paradox that remains insufficiently understood. This study examines evolving cross-sector interactions and their implications for climate resilience by analyzing global electrification trends and regional cases in Texas, integrated with global and downscaled projections of climate extremes. By identifying critical vulnerabilities and flexibility associated with increasing sectoral interdependence, this study highlights the necessity of adopting resilience-oriented, system-level strategies for system operators and policymakers to mitigate cross-sector cascading risks and maximize the benefits of electrification in a changing climate.more » « lessFree, publicly-accessible full text available June 2, 2026
-
Distribution networks, with large-scale integration of distributed renewable resources, particularly rooftop solar photovoltaic systems, represent the most extensive yet vulnerable components of modern electric power systems during climate extremes such as hurricanes. However, existing day-ahead electricity dispatch approaches primarily focus on the transmission network and lack the capability to manage the spatiotemporal risks associated with the vast distribution networks, which can potentially lead to significant power imbalances due to the mismatches between scheduled generation and actual demand. To address this increasingly critical gap under intensifying climate extremes and growing distributed renewable integration, we introduce Risk-aware Electricity Dispatch under Climate Extremes with Renewable integration (REDUCER), a risk-aware day-ahead electricity dispatch model that incorporates high-resolution spatiotemporal risk analysis for distribution networks with large-scale distributed renewable integration into an Entropic Value-at-Risk-constrained mixed-integer convex optimization framework. Applied to the 2022 Puerto Rico power grid under Hurricane Fiona, the proposed REDUCER model is seen to effectively manage these risks with substantially less reliance on additional flexibility resources to cope with power imbalances, reducing overall operational costs by about 30% under extreme cases compared to standard unit commitment strategies already informed by average demand loss. Also, the proposed REDUCER model consistently demonstrates its effectiveness in managing the increasing temporal net demand variability introduced by growing large-scale distributed solar integration while maintaining minimal operational costs. This model offers a practical solution for cost-effective and resilient electricity dispatch of modern power systems with large-scale renewable integration facing intensifying climate risks.more » « lessFree, publicly-accessible full text available May 14, 2026
-
Measuring and managing the risk of extensive distribution network outages during extreme events is critical for ensuring system-level energy balance in transmission network operations. However, existing risk measures used in stochastic optimization of power systems are computationally intractable for this problem involving large numbers of discrete random variables. Using a new coherent risk measure, Entropic Value-at-Risk (EVaR), that requires significantly less computational complexity, we propose an EVaR-constrained optimal power flow model that can quantify and manage the outage risk of extensive distribution feeders. The optimization problem with EVaR constraints on discrete random variables is equivalently reformulated as a conic programming model, which allows the problem to leverage the computational efficiency of conic solvers. The superiority of the proposed model is validated on the real-world Puerto Rico transmission grid combined with its large-scale distribution networks.more » « lessFree, publicly-accessible full text available November 14, 2025
-
Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.more » « less
An official website of the United States government
